بررسی رفتار مصالح شن دار در بارگذاری زهکشی نشده مونوتونیک با استفاده از شبکه های عصبی مصنوعی
Authors
abstract
این مقاله امکان توسعه و بکارگیری شبکه های عصبی مصنوعی در مدل سازی نتایج آزمایش های مونوتونیک سه محوری قطر بزرگ روی انواع مصالح سنگریزه ای تیزگوشه، گردگوشه و مصالح شنی با درصدهای مختلف ریزدانه بهکار رفته در بدنه سدهای مهم کشور را ارائه می دهد. در ابتدا قابلیت شبکه های عصبی مصنوعی(anns) در مدل سازی منحنی های رفتاری تنش تفاضلی- اضافه فشار آب حفره ای - کرنش محوری بررسی شده است که دلالت بر قابلیت نسبتاً مناسب مدل در شبیه سازی رفتار مصالح شن دار دارد. بانک اطلاعات بکار رفته در شبکه، شامل 52 گزینه مختلف آزمایش سه محوری کرنش-کنترل تحت شرایط زهکشی نشده است. برای مسئله مورد نظر، یک برنامه شبکه های عصبی مصنوعی پیشخوراند سه لایه پرسپترون (mlp) در محیط matlab7 نوشته شد و شبکه بهینه (تعداد لایه های مخفی، تابع تبدیل و نوع آموزش شبکه) به طریق سعی و خطا، و با توجه به شاخص های خطا و تطابق با داده های آزمایشگاهی انتخاب شد. پارامترهای ورودی شبکه شامل تنش محدود کننده، دانسیته و درصد رطوبت بهینه، توزیع اندازه دانه ها و نرخ ایجاد کرنش می باشد. نتایج نشان می دهد که anns قابلیت بسیار مناسبی در تخمین منحنی های رفتاری یاد شده در کلیه موارد بررسی شده دارد. در ادامه قابلیت شبکه های عصبی مصنوعی(anns) در بدست آوردن حداکثر زاویه اصطکاک داخلی و نتاطی از منحنی های رفتاری شامل تنش های تفاضلی حداکثر و پسماند و اضافه فشارهای آب حفره ای در کرنش های نظیر بررسی شد. ضمناً از قابلیت تعمیم شبکه عصبی مصنوعی برای بررسی موارد آزمایش نشده مثل اثر تغییرات دانسیته و درصد کوچک تر از mm 2/0 هم بهره گرفته شد.
similar resources
بررسی رفتار مصالح شندار در بارگذاری زهکشی نشده مونوتونیک با استفاده از شبکههای عصبی مصنوعی
این مقاله امکان توسعه و بکارگیری شبکههای عصبی مصنوعی در مدلسازی نتایج آزمایشهای مونوتونیک سهمحوری قطر بزرگ روی انواع مصالح سنگریزهای تیزگوشه، گردگوشه و مصالح شنی با درصدهای مختلف ریزدانه بهکار رفته در بدنه سدهای مهم کشور را ارائه میدهد. در ابتدا قابلیت شبکههای عصبی مصنوعی(ANNs) در مدلسازی منحنی های رفتاری تنش تفاضلی- اضافه فشار آب حفرهای - کرنش محوری بررسی شده است که دلالت بر قابلیت نس...
full textپیش بینی رفتار تنش_کرنش مصالح شنی با استفاده از شبکه های عصبی مصنوعی
در این پژوهش رفتار مکانیکی مصالح درشت دانه شنی با استفاده از شبکه عصبی چند لایه پرسپترون، که از پرکاربردترین شبکه های عصبی مصنوعی در مسائل ژئوتکنیکی است، شبیه سازی شده است. ابتدا اطلاعات دقیقی از آزمون های منابع مختلف در سراسر کشور تهیه و عوامل مؤثر بر مقاومت برشی خاک های درشت دانه بررسی شده است. پس از حذف اطلاعات نادرست، روند یادگیری، آزمایش و پیش بینی شبکه طی شده است. در آموزش شبکه از الگو...
full textبررسی کارایی شبکه عصبی مصنوعی در برآورد بار معلق رودخانه با استفاده از داده های دستهبندیشده
بار رسوب جریان، شاخص مفیدی در پیشبینی فرسایش خاک در حوزههای آبخیز است؛ بنابراین تدوین مدلی برای برآورد بار رسوب میتواند در مدیریت و اجرای پروژههای آبخیزداری و مهندسی رودخانه مفید باشد. در این پژوهش روش دستهبندی دادهها بهعنوان راهکاری برای افزایش دقت شبکه عصبی مصنوعی در تدوین مدل برآورد رسوب معلق بررسی شد. بدین منظور، میزان آورد رسوبات معلق رودخانههای خلیفهترخان و چهلگزی در حوضۀ قشلاق...
full textپیش بینی رفتار تغییر شکل داغ آلیاژ آلومینیوم 2030 با استفاده از شبکه عصبی مصنوعی
رفتار تغییر شکل داغ مواد بدلیل وابستگی آن به تغییرات کرنش، نرخ کرنش و دما دارای پیچیدگی های قابل ملاحظه ای است و لذا پیش بینی رفتار ماده در این شرایط مشکل می باشد. هدف از این بررسی پیش بینی رفتار تغییر شکل داغ آلیاژ آلومینیوم 2030 با استفاده از یک شبکه عصبی مصنوعی توسعه یافته مناسب می باشد. برای این منظور از آزمایشهای فشار داغ در محدوده دمایی بین 350 تا 500 درجه سلسیوس و در نرخ کرنشهای بین ...
full textمدلسازی بازده کششی تراکتور با استفاده از شبکه عصبی مصنوعی
در این مطالعه آزمایشهای مزرعهای در شرایط متفاوت عمق شخم، سرعت پیشروی و میزان وزنههای متصل به تراکتور انجام شد. در این تحقیق، عمق شخم در چهار سطح 5، 10، 15 و 20 سانتیمتر، سرعتهای پیشروی در چهار سطح 5/2، 5/3، 5/4 و 5/5 کیلومتر بر ساعت و میزان سنگینکننده نیز در چهار سطح 0، 40، 80 و 120 کیلوگرم قرار گرفت. شبکههای عصبی مدلسازی شده در این تحقیق که به منظور پیشبینی بازده کششی تراکتور مورد اس...
full textتعیین ارزش داراییهای نامشهود با استفاده از شبکه عصبی مصنوعی
درک عوامل موثر بر ارزش شرکت برای سرمایهگذاران و اعتباردهندگان پیش از اتخاذ تصمیمات سرمایهگذاری یا اعطای تسهیلات، امری حیاتی است. از آنجایی که اقتصاد دانشمحور در حال تکامل یافتن است، روش ایجاد ارزش شرکتی از شیوه سنتی مبتنی بر داراییهای فیزیکی به دانش نامشهود منتقل شده است. از اینرو در آینده نه چندان دور، ارزشگذاری داراییهای نامشهود به موضوع مهمی در اقتصاد مبدل خواهد شد. این مطالعه بر آن ...
full textMy Resources
Save resource for easier access later
Journal title:
زمین شناسی مهندسیجلد ۸، شماره ۲، صفحات ۲۰۷۱-۲۰۹۶
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023